If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+21x+34=0
a = 2; b = 21; c = +34;
Δ = b2-4ac
Δ = 212-4·2·34
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-13}{2*2}=\frac{-34}{4} =-8+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+13}{2*2}=\frac{-8}{4} =-2 $
| -6a=2–9a | | 4x+66=-x+1 | | 12x-5=-2x+23 | | 13=5p-13-4p | | 7/17=4/x | | 5x+5=-2+19 | | 2x+2.5=-13 | | 5x+8=5x=3 | | 150-20n=50 | | 5y+2=15 | | 7=c/3+5 | | 2x^2+19x+39=0 | | 5/6t+4=22-1/6t | | -u^2=49 | | 3-2x+3x=2-4x-3 | | 3x+2(3x-3)=48 | | 4x+100+24x-1=180 | | 1-2t^2-t=0 | | 4y=-8+20 | | 6+2(y-4(=13 | | x4+1=0 | | 8=x+10/x-4 | | 9x+6=5x-8 | | 9/5y-3=3/10y+6 | | -20n+20n=16 | | 2x^2+15x^2-22=0 | | 9+4(2x-1)=5.1+7x | | -5(4x-1)=-115 | | 20-f/3=40 | | 2(-3x+1)-1=5(-6/5x-2/10)+1 | | 7y+30=60 | | (6z+5)(z+5)=0 |